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The paper is devoted to an investigation of convective turbulence. A simplified
approach is used for this purpose. It considers an isolated turbulent pulsation as the
eigensolution to the corresponding equations of thermohydrodynamics. Turbulence
is generated by nonlinear interaction of pulsations: not all interactions, but only
the most probable of them are investigated. It is assumed that during convection
these are interactions of cells located along the gravity vector, i.e. lying in a vertical
line, and lateral interaction of the cells is ignored. This assumption allows one to
consider the process of the evolution and interaction of cells as axially symmetric.
It is also assumed that the vertical scales of convective cells are larger than their
horizontal scales. Therefore, the Boussinesq equations simplified in accordance with
the theory of vertical boundary layers can be used. The fact that buoyancy forces,
in addition to diffusion, influence the increase of the vertical scales, serves as a basis
for this assumption. These assumptions make it possible to obtain the analytical
and numerical–analytical solutions, which qualitatively describe the evolution and
interaction of convective cells of two essentially different scales: (i) centimetre-scale
convective pulsations and (ii) thermals and convective clouds, and to reduce the
problem to the solution of nonlinear equations (equations of the Burgers type).
Two opposite tendencies are revealed, manifested in the interaction of convective
cells. First, there is coagulation of cells and fine nonlinear effects associated with it,
which are known from observations and supported by the theory. Secondly, there is
destruction of a strong rising cell through its collision with a weak descending ‘cold’
cell. It is assumed that the destruction of cells corresponds to the absence of solutions,
when some parameters reach their critical values. A numerical solution to a more
accurate problem without simplifications of the vertical boundary layer serves as a
basis for this hypothesis. It shows that at critical values of the parameters the process
of ‘wave turnover’ begins. It is accompanied by entrainment of the motions of the
cold surrounding air into a system of convection and fast dissipation of a cell. In
the simplified model, this dissipation is considered to be instantaneous and is called
destruction. When the cells are sufficiently strong vertically, weak random fluctuations
in the fields of meteorological elements cause their destruction. These results make it
possible to propose a hypothesis which relates the degree of instability of cells with
the probability of their existence, and to construct functions of cell distributions.

1. Introduction
‘Convection’ is usually understood as processes associated with vertical thermal

unstable stratification of a liquid or gas. Rayleigh (1916) made the first successful



2 V. M. Malbackov

attempt to explain the mechanism of formation of ordered convective structures
in a viscous liquid placed in a cavity between two plane horizontal plates (Benard
cells). Later laboratory and theoretical investigation of various laminar, turbulent and
transient regimes of Rayleigh–Bénard convection have become the main apparatus in
the theory of heat mass transfer. There are numerous applications of this apparatus
in engineering, in the theory of convection in the atmosphere, ocean, Earth’s mantle,
stars, in the problem of the location of sources of heat and cold, in problems
of optimal heating or cooling of liquid and gaseous media, etc. A large number
of publications in periodicals, regional, national and international conferences are
devoted to these problems. Lectures by leading specialists in Brighton on August
14–18, 1994 give an idea of the most important investigations of heat transfer.
There are many papers in which some types of turbulent regimes are simulated
numerically (Davaile & Jampart 1993; Decker, Petch & Weber 1994; Glukhovskaya
& Ordanovitch 1993; Jimenez et al. 1993; Clever & Busse 1994; Noto, Yamamoto
& Nakajima 1994). These models are used to explain the complex mechanism of
turbulence, to test the existing methods of parameterization of turbulence, and to
develop new methods. It has been found that the K and K − ε models cannot be
used to explain many important details of the mechanism of developed convective
turbulence (Kurbatskii 1988). More complex models, which are based on second- and
third-order closure schemes, have been developed in (Andre 1976; Ebert, Shuman
& Stul 1989; Lykossov 1995). Direct application of the theory of convection to the
atmosphere, which uses the solution to the Boussinesq equations, is difficult, because
atmospheric convective processes are always turbulent. Simulation of these processes
is, as a rule, based on the fact that small centimetre scale turbulent pulsations form
mesoscale convective structures, i.e. thermals and convective clouds. Simulation of
mesoscale two-dimensional coherent structures in parameterized small-scale three-
dimensional turbulence is investigated in Glukhovskaya & Ordanovitch (1993). Also,
satellite photographs show that clouds are often clustered into large disordered and
quasi-ordered structures of various configurations. In the construction of atmospheric
models of large-scale convection, perturbations of the scale of thermals and convective
clouds, as well as smaller perturbations, are considered as turbulence and taken into
account parametrically. The form of cloud populations can be explained with the
help of such models (Malkus & Veronis 1958; Veltichev & Geokhlanian 1974).
An essential shortcoming of the Rayleigh–Bénard models is an artificially given
solid upper boundary, which is absent from the atmosphere. Models of penetrative
convection do not have this shortcoming. They consider convective processes within
the framework of the LES (large-eddy simulation) approach, and they allow for
decrease in the air density with height, and attenuation of motions due to stable
stratification of the upper layer. Atmospheric perturbations smaller than several tens
of metres are taken into account parametrically in the LES models. The LES models
are usually used to simulate a large number of convective cells: they serve to test
various parameterizations of atmospheric convection. There are also papers in which
the LES models are used to investigate ensembles of thermals and convective clouds
(Deardorff 1974; Kruger, McLean & Qiang Fu 1995; Moeng, Lenshow & Rendal
1995). One line of investigation is the development of simplified parameterization
models of convection for models of general circulation of the atmosphere. Simplified
models, which take into account transport of heat, moisture (Kuo 1965, 1974) and
momentum (Arakawa & Schubert 1974; Tiedtke 1983, 1989) in convective cells, have
been used most successfully for these purposes. In the present paper, an attempt
is made to combine the advantages of the LES models and those of the simplified
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approach. As in the LES models, interactions of cells are taken into account in
the present paper. This makes it possible to obtain cell distribution functions. The
models of convective cells and the allowance for their interaction are, however,
very simplified. Therefore, solutions can be obtained in the analytical form. This
gives hope that the solutions can be used for parameterization of convection in
models of large-scale atmospheric processes. This parameterization can turn out to
be more accurate than that used at present, because it takes into account, to a first
approximation, the space structure of convective cells and their interaction. Also,
the methods used in the present paper and the results obtained, although they are
qualitative in character, can be of interest for specialists in heat mass transfer in
liquids and gases.

The paper is devoted to an investigation of convective turbulence. For this purpose,
a simplified approach, which considers each turbulent pulsation as the eigensolution
to the corresponding equations of thermohydrodynamics, and in which turbulence
is generated by nonlinear interaction of pulsations is used (Goldshtik 1985): not all
interactions, but only the most probable of them are investigated. It is assumed that
during convection this is the interaction of cells located along the gravity vector, i.e.
lying in a vertical line, and lateral interaction of cells is ignored. This assumption
makes it possible to consider the process of evolution and interaction of cells as
axially symmetric. In addition, it is assumed that the vertical scales of convective
cells are larger than their horizontal scales, which allows one to use the Boussinesq
equations simplified by the theory of vertical boundary layers in the investigation
of convection. The fact that buoyancy forces, in addition to diffusion, affect the
increase in vertical scales, is the basis of this assumption. It should be noted that
such serious simplifying assumptions on the character of convection are not fulfilled
in reality: they are introduced to obtain accurate solutions, investigate the evolution
and interaction of convective cells and develop a hypothesis that allows one to go
from the hydrodynamic model to a simplified statistical model. It is assumed that
this model will qualitatively explain the sizes and lifetimes of micro- and mesoscale
atmospheric convective cells, i.e. it will qualitatively explain the main statistical
characteristics of atmospheric convection. Use of the hydrodynamic model even
substantially simplified for justification of statistical characteristics of convection is a
step forward in comparison to the traditional approach, which usually uses empirical
models for this purpose.

2. Mathematical formulation of the problem
Let us consider the problem of the interaction of several convective cells initiated

by thermal pulses given at the initial moment of time. The problem is solved under the
following simplified assumptions: convection develops in the polytropic atmosphere,
i.e. the temperature is a linear function of height; vertical scales of convective cells
are larger than their horizontal scales and, therefore, the initial equations are derived
from thermodynamic equations using the simplifications of the theory of vertical
boundary layer (Gutman 1969) (see Appendix A); both convective cells and thermal
pulses are axially symmetric and located on the vertical axis; coefficients of turbulent
viscosity and heat conductivity are equal and do not depend on the coordinates and
time.

After the simplifications of the convection theory and the theory of vertical bound-
ary layers (see Appendix A), the thermohydrodynamic equations have the following
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form (Gutman 1969; Malbackov 1978):
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(2.1)

where t is time; r, z are the cylindrical radial and vertical coordinates (the z-axis is
directed upwards); u, w are the radial and vertical components of velocity, respectively;
ϑ is the temperature deviation from its value θ = θ0−γz in an undisturbed atmosphere;
λ = g/θ0, g being acceleration due to gravity; ν is the molecular or turbulent viscosity
factor; α = γ− γ0, γ being the lapse rate of the undisturbed atmosphere; and γ0 is the
dry adiabatic lapse rate.

Note that (2.1) has terms which allow for the influence of vertical turbulent viscosity.
An analysis shows that these terms must be smaller than the other terms by a factor
of ε = [l(t)/h(t)]2 (l, h are the horizontal and vertical sizes of a thermal determined
by solving the problem). However, they are included for the following reasons: first,
an investigation of the balance between the inertial and viscous forces is the purpose
of this paper and, secondly, elimination of terms with the higher derivative changes
the type of equations, which is inadmissible here. Nevertheless, solutions taking into
account and not taking into account vertical turbulent viscosity should not differ
essentially from each other, because otherwise the simplifications taken are not valid.

Let us specify the initial conditions for equations (2.1). Assume that there are no
motions at t = 0 and the appearance of thermals is simulated by specification of
several axially symmetric thermal pulses located on the vertical axis at the initial
moment of time:

at t = 0, ϑ =
4ν2

λr2
0

exp

(
− r2

2r2
0

)
f0(z), w = 0, (2.2)

where f0(z) is a function which defines the vertical distribution of ϑ. It is a non-zero
function on several segments not contacting each other.

3. Solutions of the problem

Let us solve the Cauchy problem for (2.1) with the initial conditions (2.2). The
solution is sought in the following form (see Malbackov 1992 for details):

w = 4ν2a(t)ϕ(t)f(z, t) exp
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)
, (3.3)
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ϕ =


t at α = 0

sin[(−αλ)1/2t]/(−αλ)1/2 at α < 0

sinh[(αλ)1/2t]/(αλ)1/2 at α > 0,

(3.4)

ϕ1 =


1 at α = 0

cos[(−αλ)1/2t] at α < 0

cosh[(αλ)1/2t] at α > 0,

(3.5)

a = 1/(2νt+ r2
0); (3.6)

f(z, t) satisfies the equation

∂f

∂t
+ 4ν2aϕf

∂f

∂z
= ν

∂2f

∂z2
; (3.7)

at

t = 0, f = f0(z). (3.8)

If we assume a neutral stratified atmosphere (α = 0, r0 = 0) and substitute ϕ, a from
(3.4), (3.6) into (3.7), we obtain a problem for the linear thermal pulse distributed
randomly along the axis Oz:

∂f

∂t
+ 2νf

∂f

∂z
= ν

∂2f

∂z2
; (3.9)

at

t = 0, f = f0(z). (3.10)

Equation (3.9) is the well-known Burgers equation, which is reduced to the linear
equation using the substitution

f = F(z, t)

/(
c+

∫ ∞
z

Fdz

)
.

As a result, we have the following problem:

∂F

∂t
= ν

∂2F

∂z2
; (3.11)

at

t = 0, F = cf0 exp

∫ ∞
z

f0 dz. (3.12)

4. Coagulation of convective cells
Let us study in more detail thermal convection caused in the following way: finite

amounts of heat q are instantaneously released at t = 0 at several fixed points of
space on the axis with the coordinates z = zi (i = 1, 2, . . . , n; zi+1 > zi). The solution
to the problem for this case was obtained in Malbackov (1992):

f =

n∑
i=1

bi exp (−η2
i )

2(πνt)1/2

(
1 +

n∑
i=1

biψ(ηi)

) , (4.1)



6 V. M. Malbackov

where

ηi =
(z − zi)
2(νt)1/2

, ψ(ηi) =
1

π
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exp (−α2) dα,

b1 = exp (Q1)− 1, bj = exp
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)
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,

n∑
i=1
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λqs

8πcpρν2
, Qs =

∫ ∞
−∞
fdz.

Here Qi, Qs are dimensionless constants; cp is the heat capacity of air at constant
pressure; ρ is its mean density.

Relation (4.1) results from the condition of conservation of the amount of heat
released at the initial moment:

2π

∫ ∞
0

∫ ∞
−∞
ϑ dzr dr =

qs

cpρ
. (4.2)

Now let us determine the parameters of the problem for which the simplifications of
the vertical boundary layer are valid. Since the last term in (3.9) which allows for
the influence of vertical turbulence is small, the solution (4.1) should be close to the
solution to problem (3.9) to a sufficient accuracy:

∂f

∂t
+ 2νf

∂f

∂z
= 0,

∫ ∞
−∞
fdz = Qs. (4.3)

At n = 2, the solution to problem (4.3) has the following form:
at

0 6 t 6 t1 = (z2 − z1)
2/4νQ1

f =


(z − z1)/2νt at z1 6 z 6 h1(t) = z1 + 2(Q1νt)

1/2

(z − z2)/2νt at z2 6 z 6 h2(t) = z2 + 2(Q2νt)
1/2

0 at z < z1, z > h2;

(4.4)

at

t1 < t 6 t2 = t1(Q
1/2
s + Q

1/2
2 )2/Q1

f =


(z − z1)/2νt at z1 6 z 6 h1(t) = 1

2
(z2 + z1) + 2Q1νt/(z2 − z1),

(z − z2)/2νt at h1 < z 6 h2(t) = z2 + 2(Q2νt)
1/2,

0 at z < z1, z > h2;

(4.5)

at

t > t2

f =

{
(z − z1)/2νt at z1 6 z 6 h1(t) = z1 + 2(Qsνt)

1/2,

0 at z < z1, z > h1.
(4.6)

A comparison of the solutions allowing for and not allowing for vertical viscosity
shows that it has minor influence on the process, when Qi = λqi/ (8πcpρν

2) > 10. The
vertical scales of the process prevail over the horizontal scales only at such parameter
values. For example, figure 1 shows the forms of functions f(z), which do and do not
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Figure 1. The functions f(z) at different moments of time with the following parameter values:
n = 2, Q1 = Q2 = 25; ν = 10 m2 s−1. Thin line, the solution (4.1) accounting for vertical viscosity;
bold line, the solution (4.4)–(4.6) not accounting for vertical viscosity; z = h1 and z = h2 are the
maximal vertical size of thermals; z = h̄1 is the maximal vertical size of the lower thermal when the
upper thermal is absent.

account for vertical viscosity at different moments of time at the following values of
the parameters:

n = 2, Q1 = Q2 = 25, z1 = 0, z2 = 600 m, ν = 10 m2 s−1. (4.7)

It can be seen that, at Q1 = Q2 = 25, the influence of vertical turbulence is not
large. An analysis of the solution to (4.4)–(4.6) shows that the whole process can
be arbitrarily divided into three stages beginning at t = 0, t = t1 and t = t2.
Relations (4.4) are valid at the first stage. Thermal convection at 0 6 t 6 t1 develops
in two regions, which are not adjacent to each other, i.e. thermals do not interact
with each other. At this time, u is small in all convective areas, does not depend on z,
and w grows with height, in accordance with the linear law. It reaches its maximum
values

wi = 2(Qiν/t)
1/2 at r = 0 and hi = 2(Qiνt)

1/2 + zi, i = 1, 2, (4.8)

on the axis near the upper boundaries of thermals. It reaches its minimum values
w = wmin at their lower boundaries: z = zi + wmint. Here w < wmin are the velocities
which are negligibly small for thermals. In this case, the velocities of ascent of the
upper boundaries are smaller than the maximum values of updraughts in thermals.

Now let us consider the results of observations of ascending thermals. It is known
that in real conditions thermals increase in volume during ascent (Andreev & Pantchev
1975; Ludlam & Scorer 1952). Laboratory experiments show linear variation of
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thermal radii with height (Wilkins, Sasaki & Marion 1972). The vertical component
of motion is prevailing in thermals; it is maximum in the upper part of a cell,
which is called the core. Motions are insignificant in the lower part of a thermal.
The ascent velocity of the core is always lower than the maximum vertical motions
in it (Andreev & Pantchev 1975). A comparison of the results of observations with
theoretical results shows that the solution obtained describes qualitatively the main
features of the distribution of fields of meteorological elements in thermals.

Let us dwell on the mechanism of interaction of thermals. The stage of interaction
begins at t = t1. At this time, the upper boundary of the lower thermal reaches the
level z = z2 and increases its velocity. Thus, the velocity of movement of an isolated
thermal decreases with time: dh1/dt = (Q1ν/t)

1/2, whereas during the interaction this
velocity is constant and dh1/dt = 2νQ1/(z2 − z1). The ascent velocity of the lower
thermal increases due to its interaction with the upper thermal. The same conclusion
has been obtained experimentally (Wilkins et al. 1972). As the velocity of the upper
boundary of the upper thermal also decreases with time (v2 = dh2/dt = (Q2ν/t)

1/2),
the lower thermal absorbs the upper thermal completely. This takes place at t = t2.
A new thermal formed at this time does not differ from the thermal formed under
the influence of one pulse with the power qs = q1 + q2 given at t = 0, r = 0, z = z1.
Note that the coagulation of thermals is caused by the action of nonlinear dynamic
factors: linearization of equations is inadmissible, because in this case no coagulation
of thermals can take place due to the principle of superposition. For example, a lower
and more powerful thermal can go through the upper one, and after that the two
thermals will again exist independently.

Therefore, the processes of dynamic entrainment are an important factor causing
growth of convective cells. Ludlam & Scorer (1952) came to the same conclusion.
In accordance with their investigations, the total mass of entrained thermals can
substantially exceed the mass of the mother cell. As a result, the mother cell rises. It
will be shown below that the interaction processes can lead not only to growth of
thermals but also to their destruction.

Unfortunately, we know of no data of natural observations of the interaction of
atmospheric thermals. The results of experiments on laboratory simulations of such
processes are presented in Wilkins et al. (1972): portions of a fluid lighter in weight
than water (a water solution of a special chemical) were injected into water at equal
time intervals. As a result, thermals with the same buoyancy and ascending along
the same path were obtained. Thus, a system consisting of three interacting thermals
located over each other was formed. The experiments have shown that the upper
boundary of the first thermal rose at the rate v ∼ 1/t−1/2. The second thermal moved
upward at a greater speed than the first thermal. However, the upper boundary of
the third and the lowest thermal moved at a speed equal to that of the second
thermal.

Let us compare the conclusions obtained experimentally with the theoretical results.
For this purpose, we take the solution to the problem without vertical turbulence,
which describes the interaction of three similar (Q1 = Q2 = Q3 = Qs/3) thermals
located at equal intervals (z2 − z1 = z3 − z2):

f =


(z − z1)/2νt at z1 6 z 6 h1

(z − z2)/2νt at h1 < z 6 h2

(z − z3)/2νt at h2 < z 6 h3

0 at z < z1, z > z3,
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where

h1 =
2Q1νt

z2 − z1

+
z2 − z1

2
, h2 =

2Q1νt

z3 − z2

+
z3 − z2

2
,

h3 = 2(Q3νt)
1/2 + z3, t1 =

(z2 − z1)
2

4νQ1

, t2 = t1(3 + 2
√

2).

This solution is valid in a time interval t1 < t < t2, where t1 corresponds to the time,
when the lower thermal ‘catches up with’ the middle thermal. At the same moment,
the core of the middle thermal enters the trace of the upper thermal. The time t2
corresponds to when the upper thermal coalesces with the middle thermal.

Now let us determine the ascent velocities of the upper boundaries of thermals.
It is easily seen that the vertical propagation speed of the upper thermal decreases:
v3 = dh3/dt ∼ t−1/2 and that the middle thermal rises quicker than the upper thermal:
v2 = dh2/dt = 2νQ2/(z3− z2). However, the speed of the upper boundary of the lower
thermal is the same as that of the middle thermal: v1 = v2. Thus, this model describes
what has been established experimentally.

Let us investigate the evolution of thermals in a stably (α < 0) and unstably (α > 0)
stratified atmosphere. The range of external parameter values for which our theory
is applicable determines the similarity between the solutions to (3.7), (3.8) and to the
following problem without turbulent viscosity:

∂f

∂t
+ 4ν2aϕf

∂f

∂z
= 0, at t = 0 f = f0(z). (4.9)

The solutions to (4.9) at α < 0 and at α > 0 for one thermal pulse are obtained in
Malbackov (1972). The solution in the stable atmosphere (as well as at α = 0) is valid
only when thermal pulses are sufficiently strong. In contrast to neutral stratification,
however, the thermal core reaches a maximum height long before the complete
decay of convection. Once growth in the vertical has stopped, the horizontal size
of a thermal gradually approach its vertical size. For this reason, the applicability
of the theory for α < 0 is also bounded in time. At α > 0, the strength of the
initial thermal pulse is not substantial, because thermal convection is maintained by
the energy of instability, and the simplifications of the vertical boundary layer are
valid. The reason is more rapid increase of the vertical scales than the horizontal
scales.

It is not difficult to obtain the solutions to (4.9) at α > 0 and α < 0 and for the case
of two thermal pulses. An analysis of these solutions (we do not present them here,
because they are cumbersome) shows that the character of interaction of thermals is
about the same as at α = 0. The difference from the case α = 0 is that the interaction
takes place either quicker (at α > 0) or slower (at α < 0) due to more rapid or slower
increase of the vertical size of thermals.

5. Instability of convective cells
Let us show that relations (4.1) lose their physical meaning at certain critical values

of the parameters due to disturbance of the balance between the inertial and viscous
forces. Let us determine the critical values of the parameters and investigate the
behaviour of the function f at the parameter values that are close to critical values.
In considering the case of the influence of two thermal pulses on the atmosphere,
we assume that the first pulse is caused by a powerful thermal influence at Q1 > 10,
and the second very weak thermal influence at Q2 = ε � 1 is caused by random
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fluctuations in the temperature field. In this case we have b1 = exp (Q1) − 1 ≈
exp (Q1), b2 = exp (Q1 + ε)− exp (Q1) ≈ ε exp (Q1). After substituting b1 and b2 into
(4.1), we have

f =
exp (Q1)(exp (−η2

1) + ε exp (−η2
2))

2(πνt)1/2(1 + exp (Q1)(ψ(η1) + εψ(η2)))
. (5.1)

The denominator in (5.1) vanishes, and the solution makes no sense at

ε = −exp (−Q1) + ψ(η1)

ψ(η2)
. (5.2)

Thus, ε depends on t, t1, z, z1, z2, but as the fluctuations in the temperature field
can appear at any moment of time and at any point of space, the minimum absolute
value of ε should be taken from (5.2). This value corresponds to a thermal fluctuation
of minimum strength to destroy the thermal. It is reached at ψ(η1) = ψ(−∞) = 1 and
ψ(η2) = ψ(∞) = 0. Substituting these values into (5.2), we finally have

ε = εcr = − exp (−Q1). (5.3)

Weaker fluctuations do not destroy the thermal. It is easily seen that f → 0 at
η1 →∞, η2 → −∞. But the numerator in (5.1) vanishes quicker than the denominator
at certain space points, which depend on z1 and z2 at ε→ εcr .

A numerical solution to the problem without the simplifications of the theory of
vertical boundary layers, which has been obtained by us but is not published, shows
that a process like wave turnover with subsequent dissipation of a cell under the
influence of entrainment of the surrounding air into the cell is a result of disturbance
of the stability. In this simplified model, ‘wave turnover’ is prohibited by the form
of the solution itself, and the absence of solution is interpreted as instantaneous
destruction of the cell.

Let us define the maximum size of convective cells. For this purpose, consider
relation (5.3): it shows that the stronger the initial influence on the atmosphere,
the weaker the hydrodynamic stability of the convective formation it causes. If a
convective cell is formed by coalescence of several thermals, the more heat contained
in the region of convection the weaker is the stability of a convective cell.

If we consider that air viscosity is molecular, we have ν ≈ 2 × 10−5 m2 s−1 and
λ = 0.033 m s−2 0K, ρ = 103g m−3, Q1 = 25. Then, as can be easily calculated by
(4.1), (5.3), a thermal perturbation equal to q2 = −4 × 10−10cal is sufficient for a
microscale convective cell to lose its stability. Random perturbations on such a scale
can be realized even due to thermal motion of molecules.

If a medium is considered to be turbulent, turbulent pulsations in the temperature
field with q2 = −1 cal lead to ‘destruction’ of a convective cell at ν = 10 m2 s−1

and Q1 = 25. Naturally, such a cell is very close to an unstable cell. As Q1 increases,
instability increases greatly. For example, at Q1 = 100 effects that are 30 orders of
magnitude smaller than at Q1 = 25 cause ‘destruction’ of a cell.

It can be easily shown using the solutions obtained that the vertical size h is related
to the horizontal size l of thermals as

n = h/l = Q
1/2
1 . (5.4)

Relation (5.4) shows that the greater the difference between the vertical and the
horizontal scales of a convective cell, the weaker is its inertial stability. Actually,
observations show that convective cells with approximately the same vertical and
horizontal size are encountered more often (Wolfson 1961; Mazin & Shmeter 1983).
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Thus, the theory proposed is applicable in the following range of Qs values:

10 6 Qs 6 Qc ≈ 25. (5.5)

At Qs < 10, h and l differ insignificantly. Hence, the simplifications of the vertical
boundary layer that we used during the derivation of the initial equations are not
applicable. The cell is unstable at Qs > Qc.

Let us determine the maximum scales of convective turbulent pulsations and the
maximum scales of thermals using (5.5). Assuming that i = 1, Q1 = Qc, z1 = 0 in
(4.8), we have

tc = 4Qcν/w
2
m, hc = 2(Qcνtc)

1/2, (5.6)

where tc is the time of development of a convective cell; wm is the minimum value
of vertical velocity in a cell for the convective formations of this type; hc is the
characteristic vertical scale of a cell.

Assuming that the molecular viscosity of air is ν = 2×10−5 m2 s−1 at Qc = 25, wm =
10−2 m−1, we have tc = 20 s, hc = 0.2 m. In fact, thermal turbulence is not observed
in the atmosphere in the pure state: convective pulsations cannot be separated from
pulsations caused by many other factors. It is known, however, that the length of
a laminar thermal jet over a smouldering cigarette in immobile air is 10–20 cm,
which agrees with the value of h obtained theoretically. Higher, the jet breaks up into
separate vortex formations of smaller sizes. And although the jet over a cigarette is
not described by the solutions obtained, it is a prominent example of an unstable
thermal formation, whose vertical size is larger than its horizontal size, and the shape
is close to an axially symmetric one. Therefore, it is reasonable to consider that the
properties of a thermal jet over a cigarette are close to the properties of convective
cells. A turbulent medium, where thermals originate, is formed by thermally induced
pulsations and turbulent perturbations caused by shear instability of the external flow.

Assuming that a medium is turbulent (at ν = 10 m2 s−1 and wm = 1 m s−1), we have
the following maximum values of space-time scales of thermals: hc = 103 m, tc = 103 s.
The values obtained are supported by observations.

Note, however, that in real conditions a cell reaches its maximum size at the stage
of maximum evolution, whereas in accordance with (5.6) this occurs at the stage of
the process dissipation. This can be explained in a simple way: as a rule, real thermals
develop spontaneously due to the energy of instability. Relations (5.6) do not take into
account the influence of stratification on the process. Let us estimate this influence on
the evolution of convective cells. Characteristic time scales of gravitational waves (at
a < 0) and the time of their existence (at a > 0) are determined by the Brunt–Väisälä
frequency:

tb = 2π/(| α | λ)1/2. (5.7)

Substituting α = 3 × 10−3 and −3 × 10−3 K m−1, which correspond to unstable and
stable stratifications of air, into (5.7), we have tb ∼= 600 s at λ = 0.033 m s−2 K−1.
In the case of molecular viscosity of air, tc � tb. Thus, stratification of air does not
influence the scales of convective pulsations, which generate atmospheric turbulence.
A thin surface layer, where the value of α can be 2–3 orders of magnitude larger than
its characteristic value, is an exception. This property is taken into account in the
known parameterizations of the constant flows of the atmospheric layer (Deardorff
1974).

In the case of a turbulent atmosphere, we have tc > tb. Hence, stratification of air
is of considerable importance in the formation of thermals.
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6. Convection in the conditions of unstable stratification of the atmosphere
Assuming that α > 0, r0 = 0 in (3.4), (3.6) and substituting their values into (3.7),

we have

∂f

∂t
+

2ν sinh((αλ)1/2 t)

(αλ)1/2 t
f
∂f

∂z
= ν

∂2f

∂z2
. (6.1)

The function f must satisfy the following integral condition:∫ ∞
−∞
f dz = Qε, Qε =

λqε

8πcpρν2
, (6.2)

where qε is the amount of heat released at t = 0. The total amount of heat in the
region of convection increases with time:

qs

cpρ
= 2π

∫ ∞
0

∫ ∞
−∞
ϑ dzrdr =

qε cosh((αλ)1/2 t)

cpρ
. (6.3)

Problem (6.1), (6.2) is solved numerically. Several numerical schemes are used and
all of them are no longer stable at t > tc. The start of instability and ‘the form’ of
its realization depend on the scheme chosen. However, this dependence is weak with
sufficiently small time-space steps; in this case, instability takes place at Qs ranging
from 25 to 100:

Qs = Qc = Qε cosh((αλ)1/2 t) ≈ 25–100. (6.4)

A comparison of (5.5) and (6.4) allows us to conclude that whatever the stratification
of the atmosphere, a convective cell remains stable only when the amount of heat
contained in it does not exceed some critical value determined by relations (5.5), (6.4).

The numerical solution of problem (6.1), (6.2) is in good agreement with the
analytical solution of problem (4.9) in Malbackov & Perov (1993), which corresponds
to α > 0 for the case when vertical viscosity is neglected. The approximate form of
this solution at t� 1/(αλ)1/2 is as follows:

at 0 6 z 6 h, h = 2(Qεν exp ((αλ)1/2 t)/(αλ)1/2)1/2,

w = (αλ)1/2 z exp (−ar2/2), ϑ = αz exp (−ar2/2),

u = −(2ν/r)(1− exp (−ar2/2));

at z < 0, and z > 0, w = u = ϑ = 0.

 (6.5)

Expressions for the critical velocity wc, the maximum height of the convective cell hc,
and the time of existence of the cell tc obtained with the help of (6.4), (6.5) have the
following form:

tc =
1

(αλ)1/2
ln

(
Qc

Qε

)
, hc = 2

(
Qcν

(αλ)1/2

)1/2

, wc = 2
(
Qcν(αλ)

1/2
)1/2

. (6.6)

Assuming that α = 3 × 10−3 K m−1, λ = 0.033 m s−2 K−1, ν = 10 m2 s−1, Qc = 25,
and substituting these values into (6.6), we obtain hc ∼= 320 m, wc ∼= 1.6 m s−1, which
is close to the value observed in real thermals.

It should be noted that air motions within the atmospheric boundary layer are very
diverse and spontaneous. The theory developed here does not describe all the diversity
of forms of atmospheric convective cells, but it qualitatively explains the reason for
this diversity. This implies that all well-developed cells are unstable relative to finite
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perturbations. The theory does not give an answer to the question of what is the
mechanism of instability. It is, however, different for cells of different intensity. The
reason for the beginning of the destruction of cells is also different. ‘Powerful’ cells
are unstable relative to very weak perturbations caused by random fluctuations in the
temperature field. Weaker thermals can break down as a result of their interaction
with descending cells. There can be many other reasons for the instability which
are not considered by this simplified model. For example, there are the processes of
interactions of cells with each other and with the environment, which take place at
the periphery of thermals. Nonetheless, the processes mentioned, such as dissipation,
spontaneous growth and interaction of thermals, cause diversity of forms of motions
in the convective boundary layer. Nonlinear interaction causes both the growth and
the destruction of thermals.

7. Statistical characteristics of an ensemble of thermals
The results obtained allow us to propose the following hypothesis for the distri-

bution of thermals. We investigate the stability of thermals with positive buoyancy:
Qs > 0. Let us consider an unstable atmosphere again. At α > 0, the buoyancy of
thermals increases with time due to the energy of instability. We assume that buoy-
ancy increases from Qs to Qs + dQs. Then, in accordance with (5.3), the probability
that at such an increase of its buoyancy a cell will retain its stability, is as follows:

S(Qs) dQs = exp (−Qs) dQs, (7.1)

when the following condition is fulfilled:∫ ∞
0

exp (−Qs) dQs = 1, (7.2)

where S(Qs) is the density of distribution of cells over Qs.
If the theory is correct at Qs > Qε, we have, in place of (7.1), (7.2), the following:

S(Qs) dQs = exp (Qε − Qs) dQs,

∫ ∞
Qε

exp (Qε − Qs) dQs = 1. (7.3)

For the calculations, it is more convenient to write S(h) in terms of the vertical size
of thermals, or the time of their existence S(t), or the frequencies of oscillations S(n),
where n = 1/t. For this purpose, we use (6.3) and (6.5)

Qs = Qε cosh
(
(αλ)1/2t

)
≈ Qε exp

(
(αλ)1/2t

)
, h = 2

(
νQs

(αλ)1/2

)
. (7.4)

Using the relations between Qs and h, Qs and t, Qs and n we have, in place of (7.1),
the expressions

S(h) dh =
h

h2
0

exp

(
− h2

2h2
0

)
dh, h0 =

(
2ν

(αλ)1/2

)1/2

, (7.5)

S(t) dt = Qε(αλ)
1/2 exp

(
(αλ)1/2t− Qε exp

(
(αλ)1/2 t

))
dt, (7.6)

S(n) dn = −Qε(αλ)
1/2

n2
exp

(
(αλ)1/2

n
− Qε exp

(
(αλ)1/2

n

))
dn. (7.7)
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Figure 2. Comparison of calculations with observation data. Distributions of cell sizes: solid line,
calculations with (7.5)

Obviously, expression (7.5) is most convenient, because in this case the spectral density
of the size distribution of thermals is

hS(h) =

(
h

h0

)2

exp

(
− h2

2h2
0

)
. (7.8)

Also, to make a comparison with the data from observations, we need the following
quantities: Sϑ̄(h), Sw̄(h), S

wϑ
(h), where w̄, ϑ̄ are the vertical velocity and the excess

temperature due to combined action of thermals. Let us introduce definitions of these
quantities.

Let ∆S be a grid cell of a large-scale model. Let this cell contain N thermals,
whose interaction is neglected. First we should determine Sϑ̄(h), where ϑ̄ is the excess
temperature in the cell due to the combined action of thermals. The area of the
horizontal section of thermals is assumed to be much smaller than ∆S : πr2

0 � ∆S ,
where r0 = (5/a)1/2. It is assumed that all thermals appear simultaneously at t = 0.
They spontaneously grow and break down at t = ∆t, where ∆t is the time step of
the large-scale model. Convection does not reach ‘saturation’, i.e. ∆S = πr2

0N. Thus,
the model is ready for parameterization. The whole cycle is repeated with changed
large-scale parameters in the time period ∆t (see Kuo 1965, 1974 for details).

Using ϑ from (6.5), S(h) from (7.5) and averaging over ∆S , we have

Sϑ̄(h) =
2πNα

∆S
hS(h)

∫ r0

0

exp

(
−r

2

2

)
rdr ∼=

α(π)1/2h2

10h2
0

exp

(
− h2

2h2
0

)
. (7.9)

It can also be shown that

Sw̄(h) ∼=
(παλ)1/2h2

10h2
0

exp

(
− h2

2h2
0

)
, (7.10)

S
wϑ

(h) ∼=
α(παλ)1/2h3

10h2
0

exp

(
− h2

2h2
0

)
. (7.11)

7.1. Comparison of calculations and observations

A comparison of calculations and observations is illustrated in figures 2–5. In figure
2, two curves are given. The size distribution of convective cells shown by a solid
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Figure 3. Comparison of calculations with observation data: averaged normalized spectral density
of vertical heat flux at z = 265 m: solid line, calculations with (7.11)
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Figure 4. Comparison of calculations with observation data: an averaged spectrum of temperature
(dotted line) and velocity (dashed line) in a layer 300 m thick (July 7, 1970); solid line, calculations
with (7.7).

line is calculated with the use of (7.5) at α = 3 × 10−3 K m−1, λ = 0.033 m s−2 K−1),
ν = 5 m2 s−1. The distribution obtained using the measurements of Wolfson (1961) is
shown by a dotted line. Figure 3 shows nS

wϑ
/σϑ̄σw̄ (σϑ̄, σw̄ are the standard deviations

ϑ and w) measured in Bizova, Ivanov & Garger (1989) and the same values calculated
at α = 10−3 K m−1), λ = 0.033 m s−2 K−1, Qε = 0, 1, h0 = 265 m. Figure 4 shows the
average values of nSϑ̄(n)σϑ̄, nSw̄(n)σw̄ (for the lower 300 m layer) measured by Bizova et
al. (1989) and the same values calculated at α = 5×10−4 K m−1, λ = 0.033 m s−2 K−1),
Qε = 0.1 (note that Sϑ̄ and Sw̄ coincide in the model). Finally, figure 5 shows the
same as figure 4 except that the measurements were made on another day, and the
calculations were carried out at α = 10−3 K m−1.

It is seen from figures 2–5 that the model gives a more ‘compact’ distribution as
compared to the measurements. This can be explained by the limitations of the theory.
Apparently, the main reason is that the low-frequency part of the spectrum, which
corresponds to formations larger than thermals, is not filtered in the measurements.
So, the second weaker maxima in the low-frequency part of the spectrum in figures
4, 5, as pointed out in Bizova et al. (1989), correspond to clouds of the type Cu hum.
The cloud amount is 3–4 in both cases. Although the lower boundary of the clouds is
at the height of about 1 km, the influence of the clouds is observed near the surface.
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Figure 5. As figure 4 but data taken on August 7, 1971.

7.2. Comparison of the analytical model with observations and calculations using the
vorticity-resolving model

A comparative analysis of the maximum vertical velocities and maximum horizontal
size of thermals obtained from measurements (Konovalov 1970) and numerical results
using the model of an ensemble of dry thermals is given in Vaskevitch & Pushistov
1988 (a, b). Using (7.5) and (7.6), the following relations can be obtained:

S(wmax) =
wmax

w2
0

exp

(
−w

2
max

w2
0

)
, (7.12)

wmax = (αλ)1/2 h, w0 =
√

(2ν
√

(αλ)1/2)1/2, (7.13)

S(l) =
Qεl

h2
0

exp

(
l2

2h2
0

− Qε exp

(
l2

2h2
0

))
, l = 2(νt)1/2.

Figures 6 and 7 illustrate the numerical and analytical results and measurements
obtained by Konovalov (1970), who distinguishes two types of thermals: (a) thermals
with a main maximum and several secondary maxima; (b) thermals having only one
maximum. In figures 6 and 7 bold points correspond to thermals of the type (a),
crosses denote thermals of the type (b), circles show numerical results. Solid lines
denote analytical results at w0 = 1.5 m s−1, h0 = 150 m, Qε = 0.001. It is seen from
the figures that agreement of the results of both models with the measurements is
satisfactory, but the analytical model gives a more compact distribution of thermals
in accordance with their horizontal size. This may be explained by the fact that real
thermals can consist of several cells located near each other, but in the analytical
model thermals must be located at a large distance from each other, because their
lateral interaction is not taken into account.

A comparison of theoretical results with measurements in cloud is made in
Appendix B.
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Figure 6. Comparison of calculations with observation data: repeatability of maximum vertical
velocity of thermals; •, thermals of type (a); ×, thermals of type (b); ◦, numerical model; ——,
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Figure 7. Comparison of calculations with observation data: repeatability of maximum horizontal
size of thermals. The symbols are the same as in figure 6.

8. Conclusion
The results obtained in the present paper make it possible to conclude that the

processes of nonlinear interaction, i.e. coagulation of cells and their instability with
respect to external actions, are the reason for the disordered structure of convective
ensembles. Factors of influence in numerical simulation can be neighbouring cells, as
well as approximation errors: at unlimited spontaneous growth, the sensitivity of cells
to perturbing factors increases without bound, and finally they collapse under the
action of random factors. Computer simulation of turbulent regimes with the help of
Navier–Stokes equations (Ebert et al. 1989; Jimenez et al. 1993), Boussinesq equations
(Davaile & Jampart 1993; Decker et al. 1994; Glukhovskaya & Ordanovitch 1993;
Clever & Busse 1994; Noto et al. 1994), as well as equations for deep (Moeng et al.
1995) and shallow (Andreev & Pantchev 1975; Mazin & Ckrgian 1989; Vaskevitch
& Pushistov 1988 a, b) convection allow an assertion that an isolated pulsation is
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an eigensolution of the corresponding equations, and turbulence is generated by
nonlinear interaction between pulsations. The present simple analytical, but not finite
difference, model supports this. It should be noted, however, that since all simplifying
assumptions in the problem statement are not valid for a real atmosphere, the
conclusions drawn are of qualitative character, and the degree of their applicability
to real atmospheres needs further verification. Besides, it is evident that although
this simplified model elucidates the mechanism of formation of disordered structures
with different cell sizes and different lifetimes, it does not give an answer to the
question of the space-time structure of convective ensembles, which is most important
in investigation of turbulent regimes. Nevertheless, the approach developed in the
present paper can serve as a basis for construction of simplified spatial models of
atmospheric convective ensembles, the function of which is a parameterization of
convection in the simulation of weather and climate. In this case the simplifying
assumptions are acceptable (see Arakawa & Schubert 1974; Kuo 1965, 1974; Tiedtke
1983, 1989). An attempt to construct a spatial model of convective ensemble was
made in Malbackov & Perov (1993), where lateral interaction between cells was taken
into account. It influenced only the distance between cells, but did not change their
axially symmetric form.

We thank Professor Lev N. Gutman, whose ideas formed the basis of the models
proposed. This work has been supported by the Soros Fund, the Russian Fundamental
Research Fund, No. 94-05-16154, No. 96-05-66104 and the United States Fund ‘Man
and Biosphere Program’, No. 1753-300203 R4.

Appendix A. Simplifications of the theory of vertical boundary layers

The Boussinesq equations applied to the atmosphere for an axially symmetric
process, when the axis of symmetry is directed upward, have the following form
(Davaile & Jampart 1993):

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= −Rθ ∂

∂r

( p
P

)
+ ν

∂

∂r

1

r

∂ur

∂r
+ ν

∂2u

∂z2
, (A 1)

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= −Rθ ∂

∂z

( p
P

)
+ λϑ+

ν

r

∂

∂r
r
∂w

∂r
+ ν

∂2w

∂z2
, (A 2)

∂ϑ

∂t
+ u

∂ϑ

∂r
+ w

∂ϑ

∂z
= αw +

ν

r

∂

∂r
r
∂ϑ

∂r
+ ν

∂2ϑ

∂z2
, (A 3)

∂ur

∂r
+
∂wr

∂z
= 0, (A 4)

where R is the universal gas constant; ϑ, p are the convective deviations of temperature
and pressure from their background values θ(z), P (z). The other notation is as above.

It is considered that atmospheric convection is basically a nonlinear process, and
the horizontal propagation of perturbations is caused by the action of viscous forces.
These assumptions imply that the terms on the left-hand sides of the Boussinesq
equations, the terms taking into account the horizontal propagation of convective
perturbations, as well as the terms taking into account the Archimedean force are of
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the same order. We introduce the following characteristic and dimensionless variables:

t = Tτ, r = Lη, z = Hζ, w =
H

T
w′, u =

L

T
u′,

ϑ =
H

T 2λ
ϑ′, p =

νP

TRθ
p′, L = (νT )1/2, H = nL, n =

H

L
,

 (A 5)

where Greek symbols denote dimensionless coordinates and time, and primed symbols
correspond to the sought dimensionless functions. Substituting (A 5) into (A 1–A 4),
we have the following equations for the dimensionless quantities:

∂u′

∂τ
+ u′

∂u′

∂η
+ w′

∂u′

∂ζ
= −∂p

′

∂η
+

∂

∂η

1

η

∂u′η

∂η
+
L2

H2

∂2u′

∂ζ2
, (A 6)

∂w′

∂τ
+ u′

∂w′

∂η
+ w′

∂w′

∂ζ
= − L

2

H2

∂p′

∂ζ
+ ϑ′ +

1

r

∂

∂η
η
∂w′

∂η
+
L2

H2

∂2w′

∂ζ2
, (A 7)

∂ϑ′

∂τ
+ u′

∂ϑ′

∂η
+ w′

∂ϑ′

∂ζ
= (αλT 2)w′ +

1

r

∂

∂r
r
∂ϑ′

∂η
+
L2

H2

∂2ϑ′

∂ζ2
, (A 8)

∂u′η

∂η
+
∂w′η

∂ζ
= 0. (A 9)

It follows from (A 6)–(A 9) that at H2 � L2 the term (1/n2)(∂p′/∂ζ) in (A 7) can
be omitted, which was done in (A 1)–(A 3). The last terms in (A 6)–(A 8) which are
also small, are left in (A 1)–(A 3) as terms with the highest derivative determining
the type of solution to the problem (A 1)–(A 4). Moreover, there is an additional
guarantee of smallness of the terms with the vertical pressure gradient. It is easily
seen that in the case when the simplifications of the vertical boundary layer are valid,
equation (A 6) drops out of system (A 6)–(A 9) and serves to determine p′. It follows
from this equation and from (6.5) that p′ practically does not depend on z inside
the boundary layer. Thus, the vertical pressure gradient inside the boundary layer is
small at H2 � L2. Also, it follows from (A 8) at T � (αλ)1/2 that stratification of the
atmosphere must not influence convection. The above analysis of the solutions leads
to the same conclusion, which confirms the correctness of the conclusions obtained
for the cells with H2 � L2.

Appendix B. Comparison of theoretical results with measurements in
clouds

It has been shown in Malbackov 1992 that with some additional simplifying
assumptions all conclusions obtained for dry convective cells can be extended to moist
convective cells, i.e. convective clouds. In this case, γ0 in the expression α = γ − γ0

can be considered as moist–adiabatic lapse rate. Measurements given in LeMone,
Chang & Lucas (1994) (rectangles) are compared with theoretical curves in figure 8.
Distribution of updraughts with the diameter of the area is shown in the upper part
of the figure. The theoretical curve has been calculated using the following relation:

S(d) = 84
Qεd

h2
1

exp

(
d2

h2
1

− Qε exp

(
d2

h2
1

))
, h1 = 2

(
ν (αλ)1/2

)1/2

, (B 1)

where d = 2(νt)1/2 is an arbitrarily chosen diameter of the area, in which w > wmin,
and wmin > 0, which can be measured; h1 = 0.7 km, Qε = 0.6.

A significant difference between the theory and measurements at d > 2 km can be
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Figure 8. Comparison of calculations with observation data: repeatability of cloud diameters d (the
upper part of the figure); repeatability of W̄ (the lower part of the figure). Bold lines, calculations
using (B.1), (B.2); rectangles, measurements.

explained by the fact that the measurements include mesoscale structures, which are
larger than convective clouds.

The distribution with W̄ , which is the average value of w for areas where w > wmin
is shown in the lower part of the figure. The theoretical curve has been calculated by
the following relation:

S(W̄ ) = 200
W̄

w2
1

exp

(
− W̄

2

2w2
1

)
, (B 2)

wmax = (αλ)1/2h, W̄ = wmax/2, w1 = 2(ν(αλ)1/2)1/2 = 1.5 m s−1.

It is easily seen that agreement between the theory and measurements is better in
the upper part of the figure than in the lower part of the figure. This is explained by
the fact that updraughts in large mesoscale structures are usually much weaker than
in convective clouds.
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